Large scale tight-binding methods: hBN encapsulated multilayer graphene

Lucian Covaci

University of Antwerp, Belgium

Condensed Matter Theory group

Twistronics workshop 2023 - Jan 11-13, Seoul, Korea

Kite Team

- S. Joao and <u>J. Lopes (U. Porto)</u>
- M. Andelkovic, B. Jorissen, E. Aerts (U. Antwerp)
- T. Rappoport (U.F. Rio de Janeiro)
- <u>A. Ferreira</u> (Univ. York, UK)

Pybinding Team (U. Antwerp)

- D. Moldovan, M. Andelkovic
- B. Jorissen, R. Smeyers, E. Aerts

Theory graphene/hBN (U. Antwerp)

S. Milovanovic, M. Andelkovic, R. Smeyers

M. Milosevic, F.M. Peeters

Graphene, hBN samples, supermoire experiments

group of K. Novoselov (Manchester)

group of K. Wantanabe, T. Taniguchi (Tsukuba)

Funding:

U Outline

1) Large scale tight-binding simulations with Pybinding and Quantum-Kite

- Computational methodology: spectral expansions
- Details of the codes and functionalities

2) Supermoiré in hBN-graphene-hBN

• Tuning the sub-band structure with a double moiré potential

3) Flat bands in hBN encapsulated multilayer graphene

• Tuning the band flatness in Bernal bilayer graphene by gating

Quantum Kite and Pybinding software

Modelling length scales and methods

$$\hat{H}_{\text{TB}} = \sum_{(i,j,\alpha_i,\beta_j)} t_{\alpha_i,\beta_j} |\alpha_i,i\rangle\langle\beta_j,j|$$

uantwerpen.be

5

Scaling challenge

"Nano": L = 1-100 nm

length scales

real-size 2D flakes L = 1-100 μm

Additional challenge

honeycomb layers

complex structure

hybrid materials

large unit cell

Real space computational tools (Pybinding + KITE)

7

real variable (e.g., energy)
x is defined on a finite interval

Boyd's Moral principle:

- (i) When in doubt, use Chebyshev polynomials
- (ii) Unless you are sure another set of basis function is better, use Chebyshev polynomials
- (iii) Unless you are really, really sure another set of basis function is better, use Chebyshev polynomials

basis set?

Chebyshev and Fourier Spectral Methods Second Edition (Revised) John P. Boyd

9

Chebyshev based methods

80s: Chebyshev expansion of evolution operator TalEzer, Kosloff, ... 90s: Kernel polynomial method (KPM) Wang, Silver, Roder, ... • Spectral densities Zero-temperature dynamical correlations 2000 - now: • Finite-temperature dynamical correlations Roche, Mayou, Weisse, • Electronic transport (wave packet propagation) • Full spectral methods Chapelier, Yuan, ... KPM-based moments ("full spectral") Ferreira et al., PRB 83 165402 (2011) • XX conductivity graphene • Kubo-Bastin approach ("full spectral") Garcia, Covaci & Rappoport, PRL 114 • DC XX and XY conductivity at finite temperature 116602 (2015) Ferreira & Mucciolo, PRL 115, Chebyshev Polynomial Green's Function (CPGF) 106601 (2015) • Single-shot algorithm (3.6 billion atoms)

Green's function in frequency space (KPM)

$$G_{ij}(\omega + i\eta) = \langle i | \frac{1}{\omega + i\eta - \mathcal{H}} | j \rangle$$

Chebyshev expansion of the Green's function

$$G_{ij}(\omega) = \frac{-i}{\sqrt{1-\omega^2}} \left[\mu_0 + 2\sum_{n=1}^{\infty} \mu_n e^{-in \operatorname{arccos}(\omega)} \right]$$

$$\mu_n = \langle i \mid T_n(\mathcal{H}) \mid j \rangle$$
$$T_n(x) = \cos[n \ \arccos(x)]$$
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Recursive procedure:

define:
$$|j_n\rangle = T_n(H) |j\rangle$$

 $|j_0\rangle = |j\rangle$
 $|j_1\rangle = H |j\rangle$
 $|j_{n+1}\rangle = 2H |j_n\rangle - |j_{n-1}\rangle$
Sparse matrix-vector

LDOS at site i:

DOS:

$$\nu_i(\omega) = -\frac{1}{\pi} Im[G_{ii}(\omega + i\delta)]$$

$$\nu(\omega) = -\frac{1}{\pi D} \sum_{i} Im[G_{ii}(\omega + i\delta)]$$
$$\mu_n = \frac{1}{D} Tr[T_n \mathcal{H}]$$

A. Weisse et al., Rev. Mod. Phys. 78, 275 (2006)

Chebyshev Polynomial Green's Function (CPGF)

- Truncate the expansion \rightarrow Gibbs oscillations \rightarrow Kernel polynomial method (KPM)
- Jackson kernel ~ 1/M, Lorentz kernel ~ λ/M Use CPGF instead!

$$\hat{\mathcal{G}}(\omega + i\eta) = (\omega + i\eta - \mathcal{H})^{-1} = \frac{1}{i} \int_0^\infty e^{i(\omega + i\eta)t} e^{-i\mathcal{H}t} dt$$

using
$$e^{-ixt} = \sum_{n=0}^{\infty} \frac{2i^{-n}}{1+\delta_{0,n}} J_n(t) T_n(x)$$
 $\int_0^{\infty} dt e^{-st} J_n(t) = \frac{(\sqrt{1+s^2}-s)^n}{\sqrt{1+s^2}}$

$$\hat{\mathcal{G}}(\omega + i\eta) = \sum_{n=0}^{\infty} g_n(\omega + i\eta) T_n(\mathcal{H}) \qquad g_n(z) = \frac{2i^{-1}}{1 + \delta_{0,n}} \frac{(z - i\sqrt{1 - z^2})^n}{\sqrt{1 - z^2}}$$

12 A Ferreira, E.R. Mucciolo, Phys Rev Lett 115, 106601 (2015)

CPGF compared with KPM (Lorentz kernel)

S.M. João, M. Anđelković, L. Covaci, T.G. Rappoport, J. Lopes,
A. Ferreira, Royal Society open science 7 (2), 191809 (2020)

- KPM (Lorentz) does not converge to the correct function
- CPGF converges for all energies

- 60k x 60k graphene
- 0.4% vacancies
- DOS at Diract point
- KPM (Lorentz) for 1meV

W Two particle Green's function: optical conductivity

$$\Re \sigma_{xx}(\omega) = \frac{\pi}{\omega \Omega} \int_{-\infty}^{\infty} d\epsilon \left[f(\epsilon) - f(\epsilon + \omega) \right] \operatorname{Tr} \langle \hat{J}_x \hat{A}(\epsilon) \hat{J}_x \hat{A}(\epsilon + \hbar \omega) \rangle$$
$$\hat{J}_x = -\frac{ie}{\hbar} [\hat{x}, \hat{H}] \qquad \hat{A}(\epsilon) = -\frac{1}{\pi} \Im \hat{G}(\epsilon + i\eta)$$

after performing the Chebyshev expansions (CPGF)

$$\Re \sigma_x x(\omega) = \frac{\pi}{\omega \Omega} \sum_{nm=0}^{N-1} \mu_{nm} A_{nm}(\mu, T, \omega)$$

uantwerpen.be

$$\mu_{nm} = \text{Tr}\langle \hat{J}_x T_n(\hat{\mathcal{H}}) \hat{J}_x T_m(\hat{\mathcal{H}}) \rangle \qquad \text{2D expansion!}$$
$$A_{nm}(\omega, \mu, T) = \frac{\pi^2}{W^2} \int_{-\infty}^{\infty} [f(\epsilon) - f(\epsilon + \omega)] a_n(\epsilon) a_m(\epsilon + \omega)$$

T. P. Cysne, T. G. Rappoport, A. Ferreira, J. M. Viana Parente Lopes, N. M. R. Peres, Phys Rev B 94, 235405 (2016)

A. Weisse et al., Rev. Mod. Phys. 78, 275 (2006)

Stochastic evaluation of the trace

• the trace is performed by using statistical averages over R random vectors

$$|r\rangle \equiv (\xi_1^r, \dots, \xi_N^r), \quad r = 1, \dots, R$$
$$\langle \langle \xi_i^r \rangle \rangle = 0, \quad \left\langle \left\langle \xi_i^{r*} \xi_j^{r'} \right\rangle \right\rangle = \delta_{r,r'} \delta_{i,j}$$

$$\operatorname{Tr}\langle M \rangle \approx \frac{1}{R} \sum_{r=1}^{R} \langle r | M | r \rangle$$

with error

uantwerpen.be

the 2D expansion can be approximated as:

$$\mu_{nm} \approx \frac{1}{R} \sum_{r=1}^{R} \langle r | \hat{J}_x T_n(\hat{\mathcal{H}}) \frac{\hat{J}_x T_m(\hat{\mathcal{H}}) | r \rangle}{\langle \bar{r}_n |} = \frac{1}{R} \sum_{r=1}^{R} \langle \bar{r}_n | r_m \rangle$$

- make use of large amounts of memory to speed-up the simulation
- make use of self-averaging effects: use large systems to reduce R

<u>High-performance quantum transport</u> package developed in collaboration with J. Lopes (U. Porto), T. Rappoport (U.F. Rio de Janeiro) and A. Ferreira (U. York).

uantwerpen.be

Challenges

Accuracy: Green's functions are evaluated by means of **real-space polynomial expansions**, providing fine control over accuracy and energy resolution in pristine and disordered systems.

Scalability and speed: fast and highly-scalable state-of-the-art algorithms, capable of treating unprecedentedly large computational domains with multi billions of atomic orbitals in large RAM nodes. Highly efficient domain decomposition algorithms take advantage of CPU clusters.

Versatility: Generic equilibrium and out-of-equilibrium properties (e.g., local DOS and optical conductivity) of any system, from complex molecules to hetero-structures with large size unit cell. The **Pybinding interface** allows to easily define/import model parameters and select target functions/algorithms.

uantwerpen.be

17 http://quantum-kite.com

user interface

Pybinding

http://docs.pybinding.site/

Pybinding initially developed by Dean Moldovan at the University of Antwerp.

Features:

- straightforward definition of generic tight-binding model
- band structure calculation (exact diagonalization: lapack, arpack)
- periodic or finite size (nanoribbons, dots): DOS, LDOS (ED, KPM, CPGF)
- electric and magnetic fields
- defects and strains
- up to millions of orbitals (graphene, TMDs, input Wannier90, ...)

Adding the disorder, onsite and structural:

Exporting the configuration:

domain partition n1 = n2 = 2# number of unit cells along each direction. l1 = l2 = 512# boundaries - PBC # is complex - complex Hamiltonian # precision - 0 float, 1 double, 2 long double configuration = kite.Configuration(divisions=[n1, n2], length=[l1, l2], boundaries=[True, True], is complex=False, precision=1) # request the calculation of DOS calculation = kite.Calculation(configuration) calculation.dos(num points=4000, num moments=512, num random=5, num disorder=1) # configure the *.h5 file kite.config system(lattice, configuration, calculation, filename='example.h5', disorder=disorder)

disorder.add_disorder('A', 'Uniform', +1.5, 1.0

<pre>lattice = graphene((-0.5, 0.5))</pre>		
# Add vacancy disorder:		
vacancy disorder = kite.StructuralDisorder(
lattice. concentration=0.1)		
vacancy disorder.add vacancy('A')		
,		
# Add bond disorder		
node0 = [[+0, +0], 'A']		
nodel = [[+0, +0], 'B']		
node2 = [[+1, +0], 'A']		
node3 = [[+0, +1], 'B']		
<pre>bond disorder = kite.StructuralDisorder(lattice</pre>		
, concentration=0.2)		
bond disorder.add structural disorder(
# add bond disorder in the form		
<pre># [from unit cell], 'sublattice_from', [</pre>		
<pre>to_unit_cell], 'sublattice_to', value:</pre>		
(*node0, *node1, -0.6),		
(*node2, *node3, +1.2),		
# add onsite disorder		
([+0, +0], 'A', -0.3)		
)		
<pre># Adding onsite disorder distribution:</pre>		
disorder = kite.Disorder(lattice)		
<pre>disorder.add_disorder('B', 'Deterministic', -1.</pre>		
0)		
disorder add disorder('A' 'Uniform' +1 5 1 0		

Adding the disorder, onsite and structural:

import kite

Making the lattice:

def graphene(onsite=(0, 0)):
 """Make a honeycomb lattice with nearest
neighbor hopping

Parameters onsite : tuple or list Onsite energy at different sublattices

lat.add_sublattices(

name, position, and onsite potential
('A', [0, 0], onsite[0]),
('B', [1, 0], onsite[1])

lat.add_hoppings(

([0, 0], 'A', 'B', -t), ([-1, 0], 'A', 'B', -t), ([-1, 1], 'A', 'B', -t)

return lat

Twisted bilayer graphene

1.05 degs, N=12000, D=11908 x 640 x 512, Z=60

Numerical complexity depends on: num pol

num polyn (N) x system size (D) x coordination number (Z)

uantwerpen.be

S.M. João, M. Anđelković, L. Covaci, T.G. Rappoport, J.M.V.P Lopes, A. Ferreira, Royal Society Open Science 7 (2), 191809 (2020)

Anomalous Quantum Hall + disorder

N=2048x2048, D= 4 x 8192 x 8192, Z=3

Numerical complexity depends on: num polyn (N) x system size (D) x coordination number (Z)

S.M. João, M. Anđelković, L. Covaci, T.G. Rappoport, J.M.V.P Lopes, A. Ferreira, Royal Society Open Science 7 (2), 191809 (2020)

Comparison between Pybinding and KITE

	Pybinding	Quantum Kite
Hamiltonian storage	sparse matrix storage	matrix free
Parallelization (spectral methods)	OpenMP*	OpenMP
Periodic, open BC	×	x
3D systems	-	x
Inhomogeneous strains	×	-
Magnetic field	×	x
LDOS, DOS, Green's func., spectral func. (KPM, CPGF)	×	x
Green's functions (KPM, CPGF)	×	x
Band structure calculation	×	-
Single shot XX conductivity (T=0)	-	x
Full spectral conductivity (XX, XY) (finite T)	×	x
Optical conductivity	-	x
Non-linear optical conductivity	-	x

Supermoiré in hBN encapsulated graphene

Moiré: aligned graphene on hBN

- hBN is an atomically flat 2D insulator → excellent for graphene devices
- Due to the small lattice mismatch between the two materials a moiré superlattice appears (~13.9nm)
- Moiré periodicity reconstructs the spectrum of graphene into minibands \rightarrow secondary Dirac points emerge at $\pm E_D$

 $\mathbf{L}_{i}^{\mathrm{M}} = (\mathbf{1} - R^{-1}M^{-1})^{-1}\mathbf{a}_{i} \quad (i = 1, 2)$ $M = (1 + \varepsilon)\mathbf{1}$ $E_{D} = \pm 2\pi\hbar v_{F} / (\sqrt{3}\lambda)$

L. A. Ponomarenko *et al.*, Nature 497, 594 (2013)

Doubly aligned hBN - graphene - hBN

• *Question*: What happens when encapsulated graphene is almost aligned with both hBN layers

Experimental alignment procedure (in-situ)

N. R. Finney *et al.*, Nat. Nanotech. 14, 1029 (2019)

Polymer gel handle Polymer gel (PDMS) Epitaxial polymer (PMMA) hBN SiO₂/Si

Y. Yang, ..., A. Mischenko, Science Advances, 6, eabd3655 (2020)

uantwerpen.be

Z. Wang *et al.*, Sci. Adv. 5, eaay8897 (2019)

Image: Home of Moiré of moiré → Supermoiré

• Experiments on doubly aligned systems show SDPs lower energies \rightarrow large periodicities

L. Wang et al., Nano Lett. 19, 2371 (2019)

Z. Wang et al., Sci. Adv. 5, eaay8897 (2019)

N. R. Finney et al., Nat. Nanotech. 14, 1029 (2019)

Induced potential landscape

• Effective model for graphene on hBN ^[1]

 $f_{\pm}(\mathbf{r}) = \sum_{m=0}^{5} (\pm 1)^{m} e^{i\mathbf{b}_{m}\mathbf{r}} = \pm f_{\pm}(-\mathbf{r})$ $\mathbf{b}_{m} = \frac{4\pi}{\sqrt{3}a} \hat{R}_{\pi m/3} \left[1 - (1+\delta)^{-1} \hat{R}_{\theta} \right] \begin{pmatrix} 0\\1 \end{pmatrix}$

- $H = H_0 + \hbar v b U_1 f_+(\mathbf{r}) + i\xi \hbar v b U_2 \sigma_z f_-(\mathbf{r}) + i\xi \hbar v U_3 \left(\sigma_y \partial f_- / \partial x \sigma_x \partial f_- / \partial y\right)$
- We assume that bottom hBN is aligned with graphene ($\theta_1 = 0$) and the top hBN layer is rotated by angle θ_2

Geometrical consideration

• Reciprocal supermoiré vectors are given as the combination of reciprocal moiré vectors

100

$$E_D = \pm 2\pi\hbar v_F / (\sqrt{3}\lambda)$$

$$\mathbf{b}^{SM} = \mathbf{b}^{SM}(i, j, k, l) = i\mathbf{b}_{1}^{M_{1}} + j\mathbf{b}_{2}^{M_{1}} - k\mathbf{b}_{1}^{M_{2}} - l\mathbf{b}_{2}^{M_{2}}$$

$$\lambda_{1}^{SM} = \frac{a(1+\delta)}{\sqrt{2-2\cos(\theta_{2})}}, \qquad \mathbf{b}_{1}^{SM} = \mathbf{b}^{SM}(0, 1, 0, -1),$$

$$\lambda_{2}^{SM} = \frac{a(1+\delta)}{\sqrt{(2-\delta)(1-\cos(\theta_{2})) + \delta^{2} - \sqrt{3}\delta\sin(\theta_{2})}}, \qquad \mathbf{b}_{2}^{SM} = \mathbf{b}^{SM}(0, 1, -1, -1),$$

$$\lambda_{3}^{SM} = \frac{a(1+\delta)}{\sqrt{2+3\delta^{2} - 2\cos(\theta_{2}) - 2\sqrt{3}\delta\sin(\theta_{2})}}, \qquad \mathbf{b}_{3}^{SM} = \mathbf{b}^{SM}(0, 1, -2, 0),$$

$$\lambda_{4}^{SM} = \frac{a(1+\delta)}{\sqrt{(2+\delta)(1-\cos(\theta_{2})) + \delta^{2} + \sqrt{3}\delta\sin(\theta_{2})}}, \qquad \mathbf{b}_{4}^{SM} = \mathbf{b}^{SM}(1, 0, 0, -1),$$

Electronic properties: tight-binding model

• We use tight-binding technique to calculate electronic properties of the hBN/graphene/hBN trilayer

$$H = -\sum_{i,j} t(\mathbf{R}_i - \mathbf{R}_j) |\mathbf{R}_i\rangle \langle \mathbf{R}_j| + \sum_i V(\mathbf{R}_i) |\mathbf{R}_i\rangle \langle \mathbf{R}_i|$$
$$-t(\mathbf{R}) = V_{pp\pi} \left[1 - \left(\frac{\mathbf{R} \cdot \mathbf{e}_z}{R}\right)^2 \right] + V_{pp\sigma} \left(\frac{\mathbf{R} \cdot \mathbf{e}_z}{R}\right)^2$$
$$V_{pp\pi} = V_{pp\pi}^0 \exp\left(-\frac{R - a_0}{r_0}\right)$$
$$V_{pp\sigma} = V_{pp\sigma}^0 \exp\left(-\frac{R - d_0}{r_0}\right)$$

Typical DOS calculation System: ~5M atoms Hamiltonian: ~200M non-zero elements

www.pybinding.site

www.quantum-kite.com

LDOS calculation for a finite system

• We calculate LDOS for a point in the center of the unit cell in a disc ~150nm radius

b Spectral function, DOS, and conductivity at 0.6°

- Signatures of SM are found in global quantities, as well
- Strong reconstruction of the low-energy band structure

Z. Wang et al., Sci. Adv. 5, eaay8897 (2019)

Effects of relaxation (MD simulation)

- Relaxation changes the interatomic registry, which results in the appearance of significant gaps at the primary and secondary DP
- Bottom hBN layer is kept rigid to mimic the effect of a thick substrate, while graphene and top hBN are freely relaxed

I Rotations by 60°

• Rotations with 60° result in oscillating features of resistance at PDP and SDP

N. R. Finney et al., Nat. Nanotech. 14, 1029 (2019)

H Rotations by 60° (2 aligned moirés)

• Rotations with periods of 60° result in different stacking configurations

hBN encapsulated/aligned multilayer graphene

uantwerpen.be

38

SC and correlated states in ABC trilayer graphene on hBN

uantwerpen.be

B. L. Chittari, G. Chen, Y. Zhang, F. Wang and J. Jung, *PRL* 122, 016401 (2019)
G.Chen et al, Nature Physics 15, 237 (2019)
G.Chen et al, Nature 572, 215 (2019)

H hBN supported (encapsulated) multilayer graphene

Single layer:
$$U_{eff}(\mathbf{r}) = vG(u_0f_1 + \tilde{u}_0f_2)\sigma_0 + \zeta vG(u_3f_1 + \tilde{u}_3f_2)\sigma_3$$

$$+ \zeta v \left[\hat{\mathbf{z}} \times \nabla (u_1 f_2 + \tilde{u}_1 f_1) \right] . \sigma,$$

Low energy sites in top and bottom layer

$$\tilde{\mathcal{H}} = \mathcal{H}_{mult} + \begin{bmatrix} V_t(\mathbf{r}) + M_t(\mathbf{r}) & 0\\ 0 & V_b(\mathbf{r}) - M_b(\mathbf{r}) \end{bmatrix}$$

$$V_{mult}(\mathbf{r}) = V_0 \sigma_0 + v_{mult} G(s_0 f_1 + \tilde{s}_0 f_2) \sigma_0$$
$$M_{mult}(\mathbf{r}) = M_0 \sigma_3 + v_{mult} G(s_3 f_1 + \tilde{s}_3 f_2) \sigma_3$$

 $(f_1(\mathbf{r}), f_2(\mathbf{r})) = \sum_m (1, i(-1)^{m-1}) \exp(i\mathbf{G}_m \cdot \mathbf{r})$

Effect of potentials on bandstructure

• tight-binding simulation with independent contributions of effective potentials

Full atomistic TB simulation (encapsulated AB bilayer)

E=100mV/nm

Effective potentials across the moiré unit cell

Electric field dependence of AB1 configuration

Localization of the wavefunction in the moiré

• Large scale tight-binding simulations are possible (KITE, Pybinding + other software)

- An additional aligned layer leads to a further reconstruction of the spectrum at all energies (esp. low energies) → supermoiré of arbitrary wavelength
- Further enhancement of scattering through relaxation (imprinting), leads to the appearance of significant gaps at all DPs
- hBN encapsulated + aligned multilayer graphene can provide further knobs for tuning DP gaps
- Further gating can lead to flat moire bands

